doi: 10. 3788/LOP202158. 1112008

激光与光电子学进展

基于多项式拟合背景光的随机两步相移算法

李靓1,田爱玲1*,王大森2,刘丙才1,朱学亮1,王红军1

¹西安工业大学光电工程学院,陕西省薄膜技术与光学检测重点实验室,陕西 西安 710021; ²内蒙古金属材料研究所,浙江 宁波 315103

摘要 相位提取精度直接影响干涉测量精度,传统的定步长或者等步长相位提取算法必须对测试系统进行相位标定,但常因相位标定不准确而引入相移误差,影响相位提取精度。因此提出一种K阶二维多项式拟合背景光的随机两步相移算法进行相位求解,该算法无需对系统进行相位标定,可以在相移量、背景光、调制度及相位都未知的情况下,利用两帧相移干涉图求解出被测相位。通过对该算法的仿真分析,确定阶数K的取值大于等于2时,可以保证所提算法的相位求解准确度较高。同时,与施密特正交化(GS)两步相移算法的计算精度进行比较来分析算法的鲁棒性。结果表明提出的算法对干涉图中相移量、光照非均匀性及噪声均具有良好的鲁棒性,计算精度明显优于GS算法。

关键词 干涉测量;相位提取; K阶二维多项式;随机相移; 鲁棒性 中图分类号 P164 文献标志码 A

A Random Two-Step Phase Shift Algorithm Based on Polynomial Fitting Background Light

Li Jing¹, Tian Ailing¹^{*}, Wang Dasen², Liu Bingcai¹, Zhu Xueliang¹, Wang Hongjun¹

¹Shaanxi Province Key Laboratory of Membrane Technology and Optical Test, School of Optoelectronic Engineering, Xi'an Technology University, Xi'an, Shaanxi 710021, China;

 $^{2}Inner\ Mongolia\ Metal\ Material\ Research\ Institute,\ Ningbo,\ Zhejiang\ 315103,\ China$

Abstract The precision of phase extraction directly affects that of interferometry. The traditional fixed-step or equal-step length phase extraction algorithm must carry out phase calibration for the test system, but phase shift error is often introduced due to inaccurate phase calibration, which affects the precision of phase extraction. Therefore, this paper proposes a random two-step phase shift algorithm of *K*-order two-dimensional polynomial fitting background light (PFBL) to solve phase. This algorithm does not need to carry out phase calibration, and can solve the measured phase with only two frames of phase-shift interferogram when phase shift quantity, background light, modulation system and phase are unknown. When order number *K* value is greater than or equal to 2, it is determined by the simulation of *K*-order two-dimensional polynomial, the accuracy of the proposed algorithm for phase can be higher. At the same time, the algorithm robustness is analyzed by comparing the calculation accuracy of Gram-Schmidt orthogonalization (GS) two step phase-shift algorithm with the PFBL method. The results show that the PFBL method has good robustness in the interferogram phase shift, non-uniform illumination and noise, and the calculation accuracy of the PFBL method is obviously better than that of GS algorithm.

收稿日期: 2020-11-05; 修回日期: 2020-11-20; 录用日期: 2020-12-14 基金项目: 国防基础科研项目(JCKY2018426C002,JSZL2018411C001)、陕西省科技计划(2019JM-373) ^{*}E-mail: ailintian@xatu.edu.cn **Key words** interferometry; phase extraction; *K*-order two-dimensional polynomial; random phase shift; robustness **OCIS codes** 120. 3180; 050. 5080; 100. 5070

1引言

相移干涉测量技术是光学元件表面面形检测的 重要手段之一,通过相移器件获取相移干涉图,然后 对干涉图进行相位解调、相位解包、波面拟合运算, 进而提取待测面形。一般要恢复待测物体的相位信 息,至少需要三幅相移干涉图,为了减少环境噪声和 其他干扰对相位测量精度的影响,四步、五步及N步 相移算法被不断提出^[1]。然而,上述算法的使用条 件是干涉图之间的相移量为定步长或者等步长,这 无疑对相移器的制造提出了非常严格的要求。在实 际应用过程中,环境光的影响、相移器的线性或非线 性误差及外界环境振动和空气扰动等会引入随机相 移误差^[24],从而影响干涉测量的精度。

目前,国内外学者针对随机相移误差开展了一 系列随机相移算法研究。Okada等^[5]首先提出基 于最小二乘迭代求解线性方程组的方法,从一系列 随机相移干涉图中解调出相移量和相位分布。 2004年, Wang 等^[6-7]提出先进的迭代(AIA)算法, 其初始相移量可以是任意值再通过迭代计算,进行 相移量提取和待测相位恢复,其计算精度与四步相 移算法精度相当。2011年, Vargas等^[8-9]提出基于 主成分分析(PCA)算法,在滤除干涉图直流项的 基础上可以较快地提取相移量并恢复相位。2014 年,刘剑等^[10]采用变频相移干涉的方法,通过改变 光源频率来实现相位调制,消除了传统硬件相移引 起的非线性误差,提高了测量精度。上述方法,都 需要三幅或以上干涉图才能进行有效的计算。为 了降低环境振动和空气扰动对测量精度的影响,降 低测量系统的复杂性,以及减少提取相移量或恢复 相位的计算时间,两步相移算法相继出现[11-19]。极 具代表性的算法是 Vargas 等^[14]提出的基于施密特 正交化(GS)的两步相移算法,该算法恢复相位的 精度较高,计算速度较快。2016年,牛文虎等^[18]提 出改进的GS算法,在保证原有测量精度的基础上 可以实现相移量的提取。然而几乎所有的两步相 移算法都需要通过滤波去除直流项,GS算法也不 例外。但由于噪声,采集过程中环境改变,以及近 似误差等因素,使得背景成分不能被完全去除,从 而会影响测量准确度。2019年,Zhang等^[19]提出一 种GS与最小二乘迭代结合的二帧算法,该算法在 GS算法的基础上对背景光进行了一定的补偿,降 低了对背景光的敏感性。本文提出一种多项式拟 合背景光(PFBL)的随机两步相移算法用于相位 求解,该方法可以在相移量、背景光、调制度未知的 情况下,只需要两帧相移干涉图便可以确定相移 量、背景光和被测相位。测量中无需对系统进行相 位标定,相比于GS算法,所提方法精度高、鲁棒 性好。

2 PFBL算法原理

在干涉测量过程中需采集两帧随机相移干涉图,假设每帧干涉图的像素数为 $m \times n$,则这两帧干涉图 中 的 任 意 一 个 像 素 (x,y) 的 理 论 光 强 $I_i(x,y)(j=1,2)$ 可表示为

 $I_{j}(x,y) = I_{0}(x,y) + I'(x,y)\cos[\phi(x,y) + \delta_{j}],(1)$ 式中, $\phi(x,y)$ 为待测相位, $I_{0}(x,y)$ 为背景光, I'(x,y)为调制度, δ_{j} 为第j幅相移干涉图的相移量, 在两步相移干涉测量中j=1,2,并令 $\delta_{1}=0,\delta_{2}=\delta,\delta$ 取值范围为 $(0,\pi)$ 。通过多项式结 合最小二乘法可以求得背景光,再将背景光去除, (1)式可以转化为

$$\tilde{I}_{1}(x,y) = I'(x,y) \cos \phi(x,y), \tilde{I}_{2}(x,y) = I'(x,y) \cos \left[\phi(x,y) + \delta\right]_{\circ}$$
(2)

由(2)式可得

$$\phi(x,y) = \arctan\left[\frac{\tilde{I}_1(x,y)\cos\delta - \tilde{I}_2(x,y)}{\tilde{I}_1(x,y)\sin\delta}\right],\tag{3}$$

由(3)式可知,提取出相移量 δ 后,便可恢复待测相位 $\phi(x,y)$ 。

其中背景光与相移量利用多项式结合最小二乘法进行求解,求解过程为消去(1)式中的 $\phi(x, y)$,可以得到

$$0 = I_1^2(x, y) + I_2^2(x, y) - [I'^2(x, y)\sin^2\delta - 2I_0^2(x, y)(1 - \cos\delta)] - 2I_0(x, y)[I_1(x, y) + I_2(x, y)](1 - \cos\delta) - 2I_1(x, y)I_2(x, y)\cos\delta_{\circ}$$
(4)

为了求解(4)式,将 $I_0(x,y)$ 、I'(x,y)近似为K阶的二维多项式,分别用 $I_0^K(x,y)$ 、 $I'^K(x,y)$ 表示:

$$I_{0}^{K}(x,y) = \sum_{u=0}^{K} \sum_{v=0}^{K} \alpha(u,v) \times x^{u} y^{v}, I^{K}(x,y) = \sum_{u=0}^{K} \sum_{v=0}^{K} \beta(u,v) \times x^{u} y^{v},$$
(5)

式中, $\alpha(u,v)$ 和 $\beta(u,v)$ 分别是 $I_0^{\kappa}(x,y)$ 、 $I^{\kappa}(x,y)$ 表示的K阶二维多项式的系数,系数个数为 $L_0 = (K+1)^2$ 。此外, $[I_0^{\kappa}(x,y)]^2$ 和 $[I^{\kappa}(x,y)]^2$ 的多项式阶数为2K,因此(4)式中第三项可以表示为

$$[I^{\prime \kappa}(x,y)]^{2}\sin^{2}\delta - 2[I^{\kappa}_{0}(x,y)]^{2}(1-\cos\delta) = \sum_{s=0}^{2\kappa} \sum_{t=0}^{2\kappa} \gamma(s,t) \times x^{s} y^{t} = I^{2\kappa}(x,y)_{\circ}$$
(6)

 $I^{2K}(x,y)$ 是 2K 阶二维多项式, $\gamma(s,t)$ 为此 2K 阶二维多项式的系数,系数个数为 $L_1 = (2K+1)^2$ 。 $I_0^K(x,y)$ 和 $I^{2K}(x,y)$ 所示的二维多项式可以转换为 一维多项式:

$$I_{0}^{K}(x,y) = \sum_{l=L_{1}}^{L-1} \alpha(l) \times x^{\left\lfloor \frac{l-L_{1}}{K+1} \right\rfloor} y^{\left\lfloor \frac{l-L_{1}}{K+1} \right\rfloor}, \quad (7)$$

$$I^{2K}(x,y) = \sum_{l=0}^{L_1-1} \gamma(l) \times x^{\left\lfloor \frac{l}{2K+1} \right\rfloor} y^{\left\lceil \frac{l}{2K+1} \right\rceil}, \quad (8)$$

式中, $L = L_0 + L_1$;[],[]分别表示整数部分和余数 部分。(7)式中 $l = L_1, L_1 + 1, ..., L - 1$ 可以求得

$$l = L_1 + (K+1)u + v, 因 此 u = \left\lfloor \frac{l - L_1}{K+1} \right\rfloor, v = \left\lceil \frac{l - L_1}{K+1} \right\rceil, v = \left\lceil \frac{l - L_1}{K+1} \right\rceil, \exists u = 0, 1, \dots, L_1 - 1$$
可以求
得 $l = (2K+1)s + t, \exists u = \left\lfloor \frac{l}{2K+1} \right\rfloor, t = \left\lceil \frac{l}{2K+1} \right\rceil$

由于(7)式、(8)式是利用多项式拟合所得的近 似值,因此将(7)式和(8)式代入(4)式,可以得到单 个像素的误差函数,将函数简化后,得到:

$$\Delta^{K}(x,y) = I_{1}^{2}(x,y) + I_{2}^{2}(x,y) - \sum_{l=0}^{L} \gamma(l) \times F(l,x,y), \qquad (9)$$

式中,

$$\gamma(l) = \begin{cases} (1 - \cos \delta) \times \alpha(l), L_1 \leqslant l \leqslant L - 1\\ \cos \delta, \qquad l = L \end{cases},$$

$$F(l, x, y) = \begin{cases} x^{\lfloor \frac{l}{2K+1} \rfloor} y^{\lceil \frac{l}{2K+1} \rceil}, \qquad 0 \leqslant l \leqslant L_1 - 1\\ 2x^{\lfloor \frac{l-L_1}{K+1} \rfloor} y^{\lceil \frac{l-L_1}{K+1} \rceil} [I_1(x, y) + I_2(x, y)], L_1 \leqslant l \leqslant L - 1^{\circ}\\ 2I_1(x, y) I_2(x, y), \qquad l = L \end{cases}$$

显然,在最小二乘法下,可以求出系数 $\gamma(l)$,通 过 $\gamma(l)$ 的表达式可以求得相移量值 δ 和 $I_0^{\kappa}(x,y)$ 的 系数 $\alpha(l)$,将求得的 $\alpha(l)$ 及F(l,x,y)的值代入(7) 式,可以得到背景光的近似解:

$$I_{0}^{K}(x,y) = \frac{1}{2[I_{1}(x,y) + I_{2}(x,y)]} \sum_{l=L_{1}}^{L-1} \alpha(l) \times F(l,x,y)_{0}$$
(10)

求出背景光的值,便可将干涉图 I_1 、 I_2 中的背景 光去除掉,得到 \tilde{I}_1 、 \tilde{I}_2 的值,再结合提取出的相移量 值 δ 代入(3)式,便可求得待测相位的值。因为求得 的待测相位是包裹相位,再通过相位解包及波面拟 合运算便可以获取待测面形。

3 数值仿真

为了验证 PFBL 算法的可行性和面形恢复的准确性,进行数值仿真,计算流程如图 1 所示。首先, 生成一幅待测初始波面,进行随机相移操作,得到 两幅干涉条纹图;再用 PFBL 算法对这两幅干涉条 纹图进行处理,即通过 K 阶二维多项式与最小二乘 法相结合的方式求解出背景光和相移量,将干涉图 中的背景光去除掉,并结合求得的相移量值求待测 相位;然后,用相位解包裹算法对所求解的主值相 位值进行解包裹运算;最后,运用 Zernike 波面拟合 算法对解包裹相位进行波面拟合,便可以得到待测 波面的面形信息。

首先,生成直径为300mm的待测初始波面,其 面形峰谷(PV)值为2.0333λ、均方根(RMS)值为 0.4157λ,波长λ取632.8nm,其面形分布如图2(a) 所示。根据被测相位信息和双光束干涉原理,生 成两帧相移干涉图,相移量可以取(0,π)随机相移 量值,本文取π/4相移进行仿真模拟,其中背景光 与调制度均为高斯分布,分别如图2(b)和图2(c) 所示。

图 2 初始设定值。(a)待测初始波面;(b)背景光;(c)调制度

Fig. 2 Initial setting values. (a) Initial wave surface to be measured; (b) background light; (c) modulation

PFBL算法是通过*K*阶二维多项式拟合复杂曲 面来实现背景光的求解,但在求解过程中*K*值的大 小会影响背景光的计算精度,从而影响面形检测精 度。因此为了分析*K*值对相位求解精度的影响,计 算了不同*K*值时 PFBL算法的面形求解结果。假设 背景光理论值是指初始生成的背景光值,用a表示, 背景光估计值是指求得的背景光值,用 A_{κ} 表示,背 景光相对残差 ΔA_{κ} 计算公式为

$$\Delta A_{\rm K} = (A_{\rm K} - a)/a_{\circ} \tag{11}$$

K值与背景光的关系如图 3(a)所示,其中 a (x=150)表示的是第150行处背景光的理论值,A₀ (x=150)~A₇(x=150)表示的是:K取 0~7时,在 第150行处求得的背景光的值。将图 3(a)所示背景 光值进行相对残差运算所得结果如图 3(b)所示,其 中 $\Delta a(x=150)$ 表示的是第150行处背景光相对残 差的理论值, ΔA_0 (x=150)~ ΔA_7 (x=150)表示的

研究论文

第 58 卷 第 11 期/2021 年 6 月/激光与光电子学进展

是:K取0~7时,在第150行处求得的背景光的相对 残差值。最后,对图3(b)所示的相对残差值求标准 差,结果如表1所示。由于K取0、1时多项式阶数 较小,拟合得到的背景光为平面,进行相对残差运 算时,运算结果分别对应 ΔA_0 (x=150)和 ΔA_1 (x= 150),误差较大。当K取大于等于2的值时,其所对 应的多项式可以拟合曲面,并结合最小二乘法,可 以保证多项式拟合背景光的拟合精度足够高。由 图(3)和表1可知,在K取2~5时,背景光的拟合效 果随着K值的增大而变好,其相对残差也趋向于0, 并且K取5时背景光的拟合效果最好;K取5~7时, 背景光的拟合效果随着K值的增大而变差,其相对 残差也逐渐增大。这是因为在多项式拟合点数多 的情况下,存在一个最优的K值使得拟合效果最 好,当多项式阶数超过这一K值时,随着K值的增 大,振荡现象更加明显,使得拟合精度降低。

表1 背景光相对残差值的标准差

K	0	1	2	3	4	5	6	7
Standard deviation	0.394	0.324	0.049	0.048	0.043	0.025	0.039	0.052

图 4(a)和图 4(b)分别表示 K取 5时求得的背景光的值和相对残差值。由图 4(b)可知,边缘上个别点所对

应的背景光的相对残差可以达到±0.1,但是大部分区 域所对应的背景光的相对残差要小得多,约为±0.005。

图 4 K为 5 时的背景光。(a)估计值;(b)相对残差值 Fig. 4 Background light at K = 5. (a) Estimated values; (b) relative residual error

对相移量 $\delta = \pi/4$ 的两帧干涉图解调,解调 所得的相位为包裹相位,需进行相位解包、波面拟 合运算,从而获取待测面形。假设 δ 表示初始生 成的相移量值, δ_{κ} 表示所提取的相移量值也称为 相移量估计值, $\Delta\delta_{\kappa}$ 是指相移量误差,其计算公 式为 $\Delta \delta_{\rm K} = \left| \delta_{\rm K} - \delta \right|_{\circ} \tag{12}$

表 2 表示 K 值与 δ_{K} 、 $\Delta \delta_{K}$ 及求解的待测面形的关系。图 5(a)表示 K 为 5 时求得的待测面形,图 5(b)表示的是其面形残差(面形残差是指算法恢复的面形与模拟预设面形之间的差值)。

表2 算法求解结果 Table 2 Results of the algorithm

K	0	1	2	3	4	5	6	7
δ_K/π	0.1679	0.1658	0.2480	0.2493	0.2497	0.2507	0.2503	0.2496
$\Delta {\delta}_K/\pi$	0.0821	0.0842	0.0020	0.0007	0.0003	0.0007	0.0003	0.0004
Fitting surface shape PV/λ	1.7911	1.7949	2.0450	2.0464	2.0343	2.0376	2.0379	2.0351
Fitting surface shape RMS/λ	0.3080	0.3486	0.4161	0.4161	0.4159	0.4159	0.4161	0.4159
Surface shape residual error PV/λ	1.8446	1.4164	0.0144	0.0140	0.0135	0.0094	0.0124	0.0171
Surface shape residual error RMS/λ	0.3151	0.2090	0.0014	0.0015	0.0018	0.0013	0.0018	0.0023
Time/min	0.006	0.048	0.191	0.524	1.295	2.629	4.943	9.702

对于*K*阶二维多项式的阶数*K*与算法计算精 度的关系,由表2可知,当*K*取值在2~7范围内时, 采用 PFBL 算法求解相移量,相移量误差在 $0.0003\pi \sim 0.0020\pi$ 范围内波动,误差较低。由该算

图5 K为5的求解结果。(a)拟合面形;(b)面形残差

Fig. 5 Results of the surface shape at K=5. (a) Fitting surface shape; (b) surface shape residual error

法模拟所得的面形残差的PV值在0.0094λ~ 0.0171λ之间变化,RMS值在0.0013λ~0.0023λ之 间变化,变化趋势不大,并且其变化规律与表1中所 得背景光相对残差值的标准差的变化规律一致。在 K取5时,PFBL算法对背景光的拟合效果最好,其所 对应的面形残差的PV与RMS值也最小。由此可 知,PFBL算法中背景光的拟合精度对面形求解的影 响要大于相移量估计值,又因为PFBL算法对背景 光的处理也结合了最小二乘法原理,可以保证背景 光拟合精度足够高。由表2可知,当K阶二维多项式 的阶数*K*的取值大于等于2时,PFBL算法对面形求 解的准确度较高,其所得面形残差的 PV 值在 0.0100λ左右,RMS值在0.0010λ左右。同时发现在 算法运行过程中,*K*阶二维多项式的阶数*K*的取值越 大,计算的矩阵数量就越多,算法运行时间就越长。

为了比较不同像素数的干涉图对算法运行速 度及算法精度的影响,分别仿真了三组不同像素数 的干涉图,采用K取5的PFBL算法对其进行相位 求解,表3表示干涉图的像素数与算法运行速度及 算法精度之间的关系。

表3 对不同像素数的模拟干涉图进行相位恢复的运算时间和面形残差结果对比

Table 3 Comparsion of the operation time of phase recovery and surface shape residual error of analog interferograms with different pixel number

Image size /(pixel×pixel)	Time /min	Surface shape residual error PV/λ	Surface shape residual error RMS/ λ
200×200	0.631	0.0110	0.0016
500×500	5.027	0.0081	0.0011
800×800	24.677	0.0118	0.0014

由表3可知,干涉图的像素数与算法运行时间相 关,干涉图的像素数越多,算法运行过程中,计算的 矩阵越大,算法运行时间越长。但干涉图的像素数 的多少对算法精度的影响较小,对上述不同像素数 的干涉图进行相位求解,可以发现其所得面形残差 的 PV 值均在 0.0100λ 左右, RMS 值均在 0.0010λ 左右。

4 PFBL算法的鲁棒性分析

为了说明 PFBL 算法的性能,需采用不同方法 对不同相移量的两帧干涉图进行相位计算。同时, 由于实验采集的干涉图会存在条纹亮度不均匀及 噪声等情况,因此也需对不同光照条件及不同噪声 的条纹图进行仿真分析。

4.1 不同相移量

为了对比说明 PFBL 算法的性能,同时应用 PFBL 算法和传统的随机两步相移算法(GS 算法) 对相移量取(0,π)范围内的相移干涉图进行相位计 算。GS 算法的仿真实验流程:首先对干涉条纹进 行延拓,再应用高通滤波器对两帧条纹图进行背景 抑制处理,最后运用GS 算法进行处理。两种方法 提取的相移量值及算法运行时间(对于GS 算法包 括干涉条纹延拓及高斯高通滤波程序的运算时间) 如表4所示。仿真所得面形残差的PV 值和RMS 值 分别如图 6(a)和图 6(b)所示。

由上述结果可知,对相移量取(0,π)的相移干 涉图,采用PFBL算法进行相位计算,相移量误差在 0.0003π~0.0009π范围内波动,算法运行时间在

第 58 卷 第 11 期/2021 年 6 月/激光与光电子学进展

Table 4Results of PFBL and GS algorithms under different phase shifts								
	Theoretical value of phase shift/ π	0.1	0.2	0.3	0.4	0.5	0.6	0.7
Estimated value of phase shift/ π		0.1003	0.2005	0.3008	0.4008	0.5006	0.5991	0.6993
PFBL I	Residual error of phase shift/ π	0.0003	0.0005	0.0008	0.0008	0.0006	0.0009	0.0007
	Time/min	2.77	2.66	2.75	2.76	2.73	2.71	2.63
GS	Estimated value of phase shift/ π	0.1226	0.2197	0.2902	0.3858	0.4825	0.5869	0.6845
	Residual error of phase shift/ π	0.0226	0.0197	0.0098	0.0142	0.0175	0.0131	0.0155
	Time/min	5.43	5.33	5.47	5.38	5.45	5.42	5.36

表4 不同相移量下 PFBL 与 GS 算法的求解结果

2.7 min 左右, 计算所得面形的面形残差 PV 值在 0.0100λ 左右、RMS 值在 0.0010λ 左右。而采用 GS 算法求解相位时,相移量误差在 0.0098π~0.0226π 范围内波动,算法运行时间在 5.4 min 左右, 计算所 得面形的面形残差 PV 值在 0.1400λ 左右、RMS 值 在 0.0140λ 左右。说明 PFBL 算法相比于 GS 算法, 提取出的相移量值准确性更高,算法运行速度更 快,计算精度更高。PFBL 算法相比于GS算法, 最小二乘法相结合的方式,先求出背景光再将其去 除掉, 而 GS 算法对背景光的处理则是通过高通滤 波的方式将背景光直接滤除,因此 PFBL算法相比 于 GS 算法对背景成分的去除效果更好。

同时由图6亦可发现,随着相移量的增大,采用 PFBL算法进行相位计算,所得面形残差的PV值与 RMS值,均未出现明显增大趋势,且表现出较好的稳定性,说明PFBL算法对相移量具有较好的鲁棒性。

4.2 不同光照条件

在实验过程中存在光照不均匀的情况,这会导 致电荷耦合元件(CCD)所采集到的干涉条纹的亮 度不均匀,因此需对不同光照条件下的干涉图进行 待测面形提取。由于激光器输出的光束为高斯光 束,背景光与调制度均选用高斯函数

$$a \times \exp\left[b \times (x^2 + y^2)\right] \tag{13}$$

进行仿真,其中,a表示光照幅值,b表示光照非均匀 系数。考虑到实验时,光照非均匀的情况,对a取 125、b的取值在(0.01,0.15)范围内的干涉图进行 仿真分析。当b取0.01时相移干涉图如图7(a)和 图7(b)所示,b取0.15时相移干涉图如图7(c)和图 7(d)所示,仿真所得面形残差结果如图8所示。

Fig. 8 Relationship between illumination nonuniformity coefficient *b* and surface shape residual error

由图8可知,随着光照非均匀系数b的增大,

计算所得面形残差的 RMS值,未出现明显增大趋势,且表现出较好的稳定性。说明 PFBL算法对干涉条纹图中光照非均匀现象具有较好的鲁棒性。

4.3 不同噪声强度

通过实验采集的干涉图会存在不同强度的噪声,而噪声强度会影响面形检测精度。为进一步检验 PFBL算法的鲁棒性,模拟产生了包含不同强度噪声的干涉图,分别应用 PFBL算法和 GS 算法对这些干涉图进行相位计算,用于分析不同噪声对实验结果的影响,其有效区域内的面形残差的 PV 值和 RMS 值分别如图 9(a)和图 9(b)所示。

图 9 采用不同方法对不同强度噪声下的模拟干涉图进行相位恢复的面形残差。(a)面形残差 PV 值;(b)面形残差 RMS 值 Fig. 9 Surface shape residual error of the analog interferogram after phase recovery under different noise intensities with different methods. (a) PV values; (b) RMS values

由图9可知,随着噪声的逐渐增大,采用PFBL 算法进行相位计算,所得面形残差的PV值保持在 0.0100λ左右、RMS值保持在0.0010λ左右,未出现 明显变化趋势,表现出较好的稳定性,说明PFBL算 法对噪声具有较好的鲁棒性。而采用GS算法进行 相位计算时,其所得面形残差的PV值在0.2350λ~ 0.3260λ之间变化,RMS值在0.0250λ~0.0290λ之 间变化。由此可知,在不同噪声强度下,PFBL算法 所得面形残差的PV值与RMS值相比于GS算法结 果更小,波动幅度更小,稳定性也更好。

5 结 论

提出一种 PFBL 随机两步相移相位求解方法, 即通过 K 阶二维多项式与最小二乘法相结合的方 式进行相位展开,可以精确解调出光学元件表面的 相位信息。所提方法中基于条纹图引入的相移量 是随机的,并且只需两帧干涉图,可以简化实验测 量过程,降低相移的使用要求;同时相比于传统的 两步相移算法,所提方法是利用 K 阶二维多项式与 最小二乘法相结合的方式,先求出背景光再将其去 除掉,使得背景成分的去除效果更好,相位测量准 确度更高。理论分析与仿真实验,验证了本方法的 有效性,仿真结果表明所提方法精度高,对相移干 涉图中相移量、光照非均匀性及噪声均具有较好的 鲁棒性,在相位测量领域具有良好的应用前景。

参考文献

- [1] Malacara D, Servín M, Malacara Z, et al. Interferogram analysis for optical testing [M]. 2nd ed. Boca Raton: CRC Press, 2005.
- [2] Deck L L. Suppressing phase errors from vibration in phase-shifting interferometry[J]. Applied Optics, 2009, 48(20): 3948-3960.
- [3] Zhang W, Wang S H, Ren A H, et al. Optimization of Paul wavelet parameters in phase extraction of fringe patterns with large phase variation [J]. Laser &. Optoelectronics Progress, 2019, 56(12): 121005.
 张伟,王生怀,任爱华,等.大相位变化条纹相位提 取中 Paul 小波参数的优化[J].激光与光电子学进

第 58 卷 第 11 期/2021 年 6 月/激光与光电子学进展

展,2019,56(12):121005.

- [4] Lu W Q, Li J X, Duan M L, et al. Vibrationresistant interferometric shape measurement based on high-precision calculation of tilt phase [J]. Acta Optica Sinica, 2021, 41(2): 0212005.
 卢文倩,李建欣,段明亮,等.基于高精度计算倾斜 相位的抗振动干涉面形测量方法[J].光学学报, 2021, 41(2): 0212005.
- [5] Okada K, Sato A, Tsujiuchi J, et al. Simultaneous calculation of phase distribution and scanning phase shift in phase shifting interferometry [J]. Optics Communications, 1991, 84(3/4): 118-124.
- [6] Wang Z Y, Han B. Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms[J]. Optics Letters, 2004, 29(14): 1671-1673.
- [7] Wang Z Y, Han B. Advanced iterative algorithm for randomly phase-shifted interferograms with intraand inter-frame intensity variations [J]. Optics and Lasers in Engineering, 2007, 45(2): 274-280.
- [8] Vargas J, Antonio Quiroga J, Belenguer T, et al. Analysis of the principal component algorithm in phaseshifting interferometry [J]. Optics Letters, 2011, 36 (12): 2215-2217.
- [9] Vargas J, Antonio Quiroga J, Belenguer T, et al. Phase-shifting interferometry based on principal component analysis [J]. Optics Letters, 2011, 36 (8): 1326-1328.
- [10] Liu J, Tian AL, Liu BC, et al. A phase extraction algorithm in wavelength tuning interferometry [J]. Acta Optica Sinica, 2014, 34(3): 0312001.
 刘剑,田爰玲,刘丙才,等.一种变频相移干涉测量的相位提取算法[J].光学学报,2014,34(3): 0312001.
- [11] Vargas J, Antonio Quiroga J, Belenguer T, et al. Two-step self-tuning phase-shifting interferometry[J]. Optics Express, 2011, 19(2): 638-648.
- [12] Vargas J, Antonio Quiroga J, Sorzano C O S, et al.

Two-step interferometry by a regularized optical flow algorithm [J]. Optics Letters, 2011, 36(17): 3485-3487.

- [13] Deng J, Wang H K, Zhang F J, et al. Two-step phase demodulation algorithm based on the extreme value of interference [J]. Optics Letters, 2012, 37 (22): 4669-4671.
- [14] Vargas J, Antonio Quiroga J, Sorzano C O S, et al. Two-step demodulation based on the Gram-Schmidt orthonormalization method[J]. Optics Letters, 2012, 37(3): 443-445.
- [15] Tian C, Liu S C. Phase retrieval in two-shot phaseshifting interferometry based on phase shift estimation in a local mask[J]. Optics Express, 2017, 25(18): 21673-21683.
- [16] Zhang Y, Tian X B, Liang R G, et al. Random twostep phase shifting interferometry based on Lissajous ellipse fitting and least squares technologies [J]. Optics Express, 2018, 26(12): 15059-15071.
- [17] Zhang S F, Du H B, Guo R Q, et al. Two-frame phase shift extraction algorithm based on gradient descent algorithm [J]. Laser & Optoelectronics Progress, 2020, 57(13): 131205.
 张少锋, 杜虎兵, 郭瑞清, 等. 基于梯度下降法的二帧相移提取算法[J]. 激光与光电子学进展, 2020, 57(13): 131205.
- [18] Niu W H, Zhong L Y, Sun P, et al. An improved two-step phase-shifting algorithm based on Gram-Schmidt orthonormalization [J]. Chinese Journal of Lasers, 2015, 42(6): 0608002.
 牛文虎,钟丽云,孙鹏,等.一种改进的施密特正交 化两步相移算法[J].中国激光,2015,42(6): 0608002.
- [19] Zhang H Y, Zhao H, Zhao Z X, et al. Two-frame fringe pattern phase demodulation using Gram-Schmidt orthonormalization with least squares method [J]. Optics Express, 2019, 27(8): 10495-10508.